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If to a body in equilibrium under the action of a system of forces QM an 

additional system of forces AQM is applied gradually at some instance 

and then removed. then along such closed (in regard to the variation of 
the system of forces) loading path the work of the system hQM must be 

positive or zero. This is Drucker’s [ 1 1 postulate of the theory of 

plasticity. The significance and the vary validity of this postulate is 

limited to materials which exhibit stable strain hardening for all 

possible forms of loading. The converse is also true, i.e. if some of the 

states are unstable then the work of hQM for such states is negative. 

Such states are encountered for some materials even under simple tension. 

As an example the “plasticity kink” can be mentioned, (the upper bound of 

elasticity range), observed for mild steel. One may expect the appearance 

of such states in polycrystalline materials under a complex system of 

loadings. Consider, e.g. an aggregate of grains which is deformed in 

various directions. Such an aggregate may be unstable in regard to very 

small shearing displacements, which change sharply their directions. 

Drucker’s postulate, for our purpose, is valid for all possible 

plastic deformations of material bodies, with exception perhaps of some 

singular points of the deformation path. In what follows we shall ignore 

these exceptional points. However, the coincidence of the plastic-deform- 

ation increment vector with the normal to the yield surface, and the con- 

vexity of the yield surface do not follow automatically from this postu- 

late for a general case. It is necessary to stress these facts since they 

have been accepted so far as theoretically proved principles. But as we 

will see, this is correct only under the assumption that the plastic de- 

formation of a body subjected to an arbitrary loading is not accompanied 

by a noticable variation of the elastic properties of the material 8r, 

since the question of the deformational anisotropy, which appears during 

the process of plastic flow, is one of the cardinal questions, it is 
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essential to obtain for a general case the strict theoretical conclusions 
following from Drucker's postulate. 

We shall employ vector notation used in [ 2 I. Let the stress vector of 
a homogeneously deformable body in the stress space u describe a path L, 
which is determined by a function o(t). At an instant t = tk let ok = 

dt,). We shall call the path L together with uk a point k. By the un- 

loading from the point k and then elastically reloading along various 
directions we can obtain points T of the yield surface fk(aT) = 0. Inside 
of this surface the plastic deformations remain constant, *and outside of 
it appear additional plastic deformations. In connection with Drucker’s 
postulate consider an arbitrary fixed point M determined by a vector uM 
inside of fk,a point T determined by vector aT on fk and a point P in the 
neighborhood of T outside of fk determined by vector u . Consider next a 
closed loading-unloading path MTP TM. ‘Ihe process a&g the paths MT 
and PTM (without ternary passing beyond the elastic limit) is conservative 
provided that the elastic limit was not exceeded. This means that these 
processes do not depend upon the trajectories but only on the points 
(M, T) and (P, M). This is because the corresponding deformations are 
elastic. In order that all states along this path should be defined, the 
path TP itself must be well defined. ‘lhe same applies to path L for 
point k. Let path TP be a segment of a straight line determined by a 
unit vector e, and let the magnitude of TP be s. For simplicity path MT 
will also be taken as a segnent of a straight line determined by a unit 
vector el and having magnitude s 1. Consequently, 

(MT) o - Q~ = Aa = si’ei, (O< 81' < 4 

(1) 
VP) 5 -- Q = Ao = srei + s’e, (0 < s’< s) 

The hypothesis of linear elasticity consists in that the elastic part 
of the total deformation satisfies 

3 = 3e + 3p (2) 

i.e. z+ is a linear, homogeneous function of the strain 

3e== (E) G (3) 

where the symnetric matrix (6) of the elastic constants depends on the 

previous plastic deformations. It is constant inside of fk and is deter- 
mined by point k, it is also constant during the reversed motion along 

the path PTM and is determined by point P, (here point P is understood 
to represent point k, path TP and up);along the path TP, however, (6) 

varies from (c)~ to (c)~ and it is a continuous function of s'. 

Note that the hypothesis of linear elasticity is not satisfied exactly, 

and thus (3) should be viewed as an approximation. From this hypothesis 
it follows that 
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(MT) da = de = (~)~do = (e)TdG, drr = e, ds,’ 

P’P) da = dap + (E)~ da + & (E) G ds’, do = eds’ 

(PT) da = da” = (E)~ ds, do = eds’. . . 

VW da = d+ = ( E)~ da, da = e,ds,’ 

(41 

Drucker's postulate asserts that the work is non-negative 

w=I I Aad3 (5) 
MTPTM 

In calculating the work W we omit small quantities of second and 

higher orders in s and of third and higher orders in sl. Thus in the ex- 

pansions 

(E)s’ = (c)T + s’ [& (&)lT+ * . * (E)p = (E)T + s T +-a. (6) 

-&- (E)s’ = [ & (E)IT + S’ [$ (@IT + . * - 

it is sufficient to retain terms which appear above. Obviously we have 

\ Ao&e=- \ Aads"=- \ Ag(E)pdb 

Pi’M &k-P Mi’P 

and therefore 

W- A&P= 
s 

Ao [(&)T - (C)P] ds + 

TP 

+ \ ACT [(E&P - (E)plds + \ Aa & (E) Q ds' 
TP TP 

Taking into account (11, (4) and (61, we conclude that the first in- 

tegral on the right-hand side of (b) is a mnall quantity of the order 
2 

ss1 9 the second of the order s2s1, and the third of the order ssl. The 
integral which appears on the left-hand side can be represented, with an 

accuracy to the order of s2s1 as follows: 

s Au d@ = slsel 
( > 

d? 
TP 

ds T 

Retaining snail quantities of the order ssl and ss12, and dropping 

s2s1, . . . . results in 

W = sslel + (&)T’ GM 
I 

+ + ss12el (E)T’ el (7) 
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daP 
-, ds (&)T’ = $ (E) 

are computed at the point T along the path TP. 

The vector 

3'= [-$+(")'ojT 

is independent of the position of point M, i.e. of the direction of the 

vector el. Let now point M be moved to the point T, located on the sur- 

face fk at a distance .sl from T. Approaching to the limit with s + 0, 
Sl + 0 

vector 

obtain 

under the condition that s/s1 + 0, and taking into account that 

el in the limit is tangent to the surface fk at the point T, we 

from the Drucker's postulate 

e,.3'>0 

arbitrary e1 1 . ying in the tangential plane. This is possible only 

case when the vector 3' is directed along the normal n to the 

for an 

in the 

surface fk at the point T: 

3'= 13’1 l n 

Consequently, from the positiveness of the work increment, it 

that the form of the stress and plastic deformation relationship 

g + (8)’ Q = Ggrad f 

Where f(o) = 0 is the equation of the yield surface, ds = Ido1 , and CC 1' 

(9) 

follows 
is 

(10) 

is a derivative of the elastic-constants matrix (inverse quantities of 

the moduli) with respect to s'. at a point u. 'Ihe expression (10) differs 

from a cornaonlyrused form because of the presence of a second term (C)Q. 

In order to account correctly for the elastic properties of materials, 

the evaluation of the magnitude of this term should be made in coqarison 

with the magnitude (6) dufds. lie ratio of these magnitudes even with 

respect to the modulus 

(11) 

is not small cz priori. For instance, for a simple tension (r = I/E, E - 

elasticity modulus) 
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will be of the order of one for a number of materials. Thus, the 

principle of the wincidence of the plastic-deformation increment vector 

with the normal to the yield surface is true in general only under 

certain restrictive assumptions in regard to the influence of the elastic 

properties of the medium. Substantial deviations from this principle 

should be expected in the neighborhood of the wrner points along the de- 

formation and stress paths, where the influence of the elastic properties 

is particularly strong. 

Let us now construct a twz+dimensional plane II containing vector el 

and a normal n at point T. This plane will intersect the yield surface 

fk = 0 along some plane curve, and a tangential hypersurface along a 

straight line T Q x containing point T. l’he distance z from this straight 

line to the curve measured in the plane II along the direction parallel to 

the exterior normal n at a point x, within the accuracy of small 

quantities of higher order, is expressed by the curvature K, which is 

considered to be positive if the curve is concave 

2 =$xX2 

‘Ihe distance of a point T, of the surface which coincides with the 

point M to the point T is approximately sl, and the elevation of point T, 
from the curve T - x (for K > 0) is l/2 K.s~~. Thus, to the second order 

of approximation, vector el (directed from T, to T) forms with the 

normal n an obtuse angle (1/2)rr + (~/Z)KS~, and elnl = l/2 KS~. 

lhe mrk W in (7), after taking into acwunt that urn = oT - slel, to 

the second order of approximation, acwrding to (9) can be represented 

as 

W = + ssi2 [e,‘(e)r’er - x ! 3’ /] (12) 

From the condition W > 0 it follows 

x 13’ I < el (e)T’e (13) 

Here el is a unit vector of an arbitrary tangent line to the surface fk 
at T, and (6 ),,.‘.= d(~ )/CAT is a syntnetric matrix whose elements are the 

derivatives of (6) with respect to an arbitrary unit vector e, which is 

directed either outside of fk or is tangent to it. Clearly, under such 

circumstances we have no reason to assert that a symmetrical quadratic 

form of the directional cosines 

el (&)T’ el = Eij’ rirj (i, j = 1,2,. . . , 5) (14) 

will be positive for arbitrary k, el and e. Indeed, taking into account 
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that the elastic constants 6 ij form a matrix which is an inverse of the 
elastic moduli matrix ‘ij, and that in a number of known simplest cases 
they increase with increasing plastic deformation (the moduli decrease), 
there exist certainly such materials and such loading paths for which the 
form ( 14) is negative. Moreover, according to (13) the curvature K can be 
either negative (convex) or positive (concave). (If for simple loading 
the moduli are decreasing, then it is most probable that for reversed 
plastic deformations they are restored to a certain degree of their 
initial values, i.e. el&)‘el < 0). 

Thus, the hypothesis of the convexity of fk likewise has no theoretical 
basis, unless we neglect elastic properties of materials. For an ideally 
rigid-plastic body this hypothesis, as well as the hypothesis of the co- 
incidence discussed above, is certainly theoretically well grounded. 
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